362. The Chemistry of the Glutaconic Acids. Part XXIV. The Catalytic Effect of Alkalis on the Rate of Racemisation of l-transa γ-Dimethylglutaconic Acid.
By Joan E. Bull, James S. Fitzgerald, J. Packer, and Jocelyn Field Thorpe.
The rate of racemisation of l-trans- $\alpha \gamma$-dimethylglutaconic acid under the influence of various concentrations of hydrochloric and sulphuric acids has been studied by Fitzgerald and Packer (J., 1933, 595), who showed that it may be expressed as the sum of the partial rates due to the different catalytic entities present. The following equation most nearly fits their experimental values :

$$
v=1.5 \times 10^{-2}+4 \times 10^{9}\left[\mathrm{OH}^{\prime}\right]+4 \times 10^{-2}\left[\mathrm{H}_{3} \mathrm{O}^{\bullet}\right]
$$

The constant term includes the catalytic effect of the water and glutaconic acid molecules, the concentration of which may be considered to be constant in acid solutions. The rate of racemisation is here represented by v, instead of k as in the above paper, because, although numerically equal to the pseudo-unimolecular velocity constant (k) for the change at each fixed concentration of the catalyst, and therefore independent of the concentration of the glutaconic acid, it is, obviously, a function of the concentration of the catalyst.

The work has now been extended to a study of catalytic effect of various concentrations of potassium and ammonium hydroxides on the same system. The methods of measuring and calculating the rate of racemisation were exactly as described in the previous paper. The results are given in Table I, in which M is the concentration of catalyst (mols./l.), r gives the ratio of M to the molarity of glutaconic acid, which was approx. $0 \cdot 125 M(2 \mathrm{~g}$. per 100 c.c.), and k is the unimolecular velocity constant at $100^{\circ} ; p_{\text {H }}$ relates to the glutaconic-alkali mixtures, and was measured colorimetrically, several of the lower concentrations being checked by measurements with a hydrogen electrode.

Table I.

M	γ	$\begin{gathered} 100 k \\ \left(\mathrm{hr} .^{-1}\right) \end{gathered}$	$p_{\text {H }}$.	M (Water)	\boldsymbol{r}	$\begin{gathered} 100 k \\ \left(\mathrm{hr} .^{-1}\right) . \\ 2.92 \end{gathered}$	$\begin{aligned} & p_{\mathrm{H}} \\ & 2 \cdot 48 \end{aligned}$	M.	$\boldsymbol{\gamma}$	$\begin{gathered} 100 k \\ \left(\mathrm{hr} .^{-1}\right) . \end{gathered}$	$p_{\text {H }}$.
Potassium hydroxide.											
$0 \cdot 0005$	0.004	$3 \cdot 02$	$2 \cdot 6$	$0 \cdot 10$	$0 \cdot 8$	14.28	$4 \cdot 4$	$0 \cdot 30$	$2 \cdot 4$	$4 \cdot 63$	$8 \cdot 6$
0.001	$0 \cdot 008$	3-13	$2 \cdot 7$	$0 \cdot 125$	$1 \cdot 0$	$8 \cdot 95$	$4 \cdot 6$	$0 \cdot 40$	$3 \cdot 2$	$17 \cdot 44$	$9 \cdot 6$
$0 \cdot 005$	$0 \cdot 04$	$4 \cdot 59$	$2 \cdot 9$	$0 \cdot 15$	$1 \cdot 2$	6.98	$5 \cdot 0$	$0 \cdot 50$	$4 \cdot 0$	$33 \cdot 01$	$10 \cdot 2$
0.01	0.08	$5 \cdot 97$	$3 \cdot 0$	$0 \cdot 20$	$1 \cdot 6$	$2 \cdot 43$	$5 \cdot 8$	$0 \cdot 60$	$4 \cdot 8$	$42 \cdot 15$	-
0.05	0.4	$12 \cdot 96$	$4 \cdot 0$	$0 \cdot 225$	$1 \cdot 8$	0.995	$6 \cdot 0$	$0 \cdot 75$	$6 \cdot 0$	$90 \cdot 46$	-
0.075	$0 \cdot 6$	14:50	$4 \cdot 2$	$0 \cdot 25$	$2 \cdot 0$	$0 \cdot 644$	$7 \cdot 4$	$1 \cdot 00$	$8 \cdot 0$	$135 \cdot 3$	-
Ammonium hydroxide.											
$0 \cdot 0005$	$0 \cdot 004$	$3 \cdot 44$	$2 \cdot 6$	$0 \cdot 10$	$0 \cdot 8$	14.98	$4 \cdot 4$	$0 \cdot 30$	$2 \cdot 4$	0.597	$8 \cdot 0$
$0 \cdot 002$	0.016	$4 \cdot 32$	$2 \cdot 7$	$0 \cdot 125$	$1 \cdot 0$	$11 \cdot 31$	$4 \cdot 6$	$0 \cdot 40$	$3 \cdot 2$	$1 \cdot 19$	$8 \cdot 6$
0.01	0.08	$8 \cdot 38$	$3 \cdot 4$	$0 \cdot 15$	$1 \cdot 2$	$10 \cdot 21$	$4 \cdot 95$	$0 \cdot 50$	$4 \cdot 0$	$0 \cdot 43$	$9 \cdot 0$
0.05	$0 \cdot 4$	$13 \cdot 19$	$3 \cdot 8$	$0 \cdot 20$	$1 \cdot 6$	$3 \cdot 35$	$5 \cdot 4$	$1 \cdot 00$	$8 \cdot 0$	$1 \cdot 27$	$9 \cdot 5$
$0 \cdot 075$	$0 \cdot 6$	$15 \cdot 86$	$4 \cdot 1$	$0 \cdot 25$	$2 \cdot 0$	$0 \cdot 669$	$6 \cdot 0$	$5 \cdot 09$	40	$1 \cdot 17$	

The value for the $p_{\text {H }}$ of the aqueous solution of the glutaconic acid (2.48) is somewhat lower than that given in the previous paper (2.7), obtained with a quinhydrone electrode,

Fig. 1.

Fig. 2.

for it has now been found that, both in the aqueous solutions and in those containing added hydrochloric acid or potassium hydroxide, this electrode gives a somewhat higher value than the hydrogen electrode. This difference is negligible for the present work, and is probably due to a " salt effect " of glutaconic acid on the former electrode.

In Fig. $1 k$ is plotted against M. With increasing concentration of potassium hydroxide the rate of racemisation first increases, as would be expected from Fitzgerald and Packer's equation, to a maximum at $0.075 M$, then falls to a minimum at $0.25 M$, and finally
increases again rapidly. With ammonium hydroxide, the curve is similar up to 0.25 M , but above that the rate altered very little, although experimental difficulties made its determination less accurate in this region. For this difference between the two alkalis no explanation has been found; no chemical interaction between the ammonia and glutaconic acid could be detected. The slightly stronger catalytic effect of ammonium hydroxide up to concentrations of 0.25 M may be due to the catalytic activity of ammonia molecules, but is of minor importance and has been neglected in the discussion.

The maximum in k occurs when r is just less than unity, whereas at the minimum $r=2$, corresponding to formation of the normal salt. The racemisation is brought about by tautomeric mobility in the three-carbon system of the glutaconic acid, and the effect of adding alkali to this system is not only to increase the hydroxyl-ion concentration, but also to bring about ionisation of the terminal carboxyl groups by salt formation. According to modern theories of prototropic change, the presence of a negative charge produced by such ionisation would be expected to bring about decreased mobility in the prototropic system. In order to test this view and obtain a quantitative measure of the effect of replacing a $\mathrm{CO}_{2} \mathrm{H}$ by a $\mathrm{CO}_{2}{ }^{\prime}$ group, it is necessary to know the concentrations of the undissociated glutaconic acid molecules $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4}\right)$, and of the partially dissociated ($\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{\prime}$) and completely dissociated ($\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}{ }^{\prime \prime}$) ions at each concentration of added alkali. These values have been calculated from the measured dissociation constants of the glutaconic acid (see p. 1657) and are recorded in Table III. The three species are denoted in the following by $\mathrm{HCH}, \mathrm{HC}^{\prime}$, and $\mathrm{C}^{\prime \prime}$ respectively.

It may be shown that above $p_{\mathrm{H}} 2.8$ the catalytic effect of the hydrogen ions is negligible in comparison with that of the hydroxyl ions; and also that at $p_{\text {H }}$ less than $3 \cdot 3$ the system HCH is the only one present in appreciable concentrations, whereas above $p_{\mathrm{H}} 8 \cdot 4, \mathrm{C}^{\prime \prime}$ alone is present. Hence the relative rates of change of the undissociated glutaconic acid and doubly ionised normal salt can be obtained by comparing the hydroxyl-ion concentrations of the two systems at equal values of k. Practically constant values are obtained over a considerable range as is shown in Table II, from which it appears that the rate of change of the undissociated glutaconic acid (HCH) is 4.5×10^{5} times that of the doubly-ionised normal salt ions ($\mathrm{C}^{\prime \prime}$).

In order to represent the velocity in the range in which rate of change of the uni- and bi-valent anions becomes important, it is necessary to expand Fitzgerald and Packer's equation by the addition of terms expressing the speeds of racemisation of these ions. Unless the relative catalytic efficiencies of the hydrogen and hydroxyl ions for the racemisation of the anions is very different from those for the undissociated acid molecules, it can be shown that, over the p_{H} range in which the anions HC^{\prime} and $\mathrm{C}^{\prime \prime}$ are present, the effect of the former may be neglected in comparison with that of the latter. In support of this, it was found that the addition of only two terms, expressing the catalytic effect of the hydroxyl ions on the HC^{\prime} and $\mathrm{C}^{\prime \prime}$ anions, sufficed to represent the results, notwithstanding that, owing to dissymmetry of the structure, two univalent ions (${ }^{\prime} \mathrm{CO}_{2} \cdot \mathrm{CHMe} \cdot \mathrm{CH}: \mathrm{CMe}^{2} \cdot \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{CHMe} \cdot \mathrm{CH}: \mathrm{CMe}^{\prime} \cdot \mathrm{CO}_{2}{ }^{\prime}$), in addition to the bivalent ion $\mathrm{C}^{\prime \prime}$, might be expected to occur. The equation which best agrees with our results is

$$
\begin{aligned}
v= & \left\{1.65 \times 10^{-2}+4.06 \times 10^{-2}\left[\mathrm{H}_{3} \mathrm{O}^{\circ}\right]+2.03 \times 10^{9}\left[\mathrm{OH}^{\prime}\right]\right\} m_{\mathrm{HOH}} \\
& +7.62 \times 10^{5}\left[\mathrm{OH}^{\prime}\right] m_{\mathrm{HO}^{\prime}}+4.51 \times 10^{3}\left[\mathrm{OH}^{\prime}\right] m_{\mathrm{O}^{\prime}} .
\end{aligned}
$$

where $m_{\text {HOH }}, m_{\mathrm{HO}^{\prime}}$, and $m_{\mathrm{O}^{\prime \prime}}$ represent the molar fractions of the total glutaconic acid present in the three states. The coefficients in this equation representing the catalytic activities of the undissociated glutaconic acid and of the hydrogen and hydroxyl ions on the undissociated acid molecules HCH are somewhat different from those in Fitzgerald
and Packer's equation, but the change makes little difference to the agreement on the acid side previously studied.

The values of v calculated from this equation are shown in col. 5 of Table III, and are represented by the curve in Fig. 2. The points correspond to the experimentally determined values of k, those below $p_{\mathrm{H}} 2.5$ being the values given by Fitzgerald and Packer, the p_{H} 's of the solutions of very low hydrochloric acid concentration having been omitted.

Table III.

$p_{\text {H }}$.	[HCH].	[HC^{\prime}].	[C^{\prime}].	$\begin{aligned} & 100 v, \\ & \text { calc. } \end{aligned}$	$p_{\text {H }}$.	[HCH].	[HC^{\prime}].	[${ }^{\prime}$].	$\begin{aligned} & 100 v, \\ & \text { calc. } \end{aligned}$
$2 \cdot 48$	$0 \cdot 124$	0.003	-	$2 \cdot 2$	$5 \cdot 0$	$0 \cdot 0044$	0.080	0.042	$7 \cdot 07$
$2 \cdot 6$	$0 \cdot 124$	0.003	-	$2 \cdot 4$	$5 \cdot 2$	$0 \cdot 0016$	0.069	0.056	$4 \cdot 15$
2.7	$0 \cdot 124$	0.003	--	$2 \cdot 61$	$5 \cdot 4$	$0 \cdot 0008$	0.056	0.071	$3 \cdot 32$
$2 \cdot 9$	$0 \cdot 121$	0.006	-	$3 \cdot 08$	$5 \cdot 6$	$0 \cdot 00041$	0.046	0.081	$2 \cdot 74$
$3 \cdot 0$	$0 \cdot 116$	0.011	--	$3 \cdot 45$	$5 \cdot 8$	$0 \cdot 00018$	0.037	$0 \cdot 09$	1.96
$3 \cdot 2$	$0 \cdot 114$	0.013	-	$4 \cdot 37$	$6 \cdot 0$	$0 \cdot 00008$	0.022	$0 \cdot 105$	l-41
$3 \cdot 4$	$0 \cdot 108$	0.019		$5 \cdot 74$	6.2	$0 \cdot 000037$	0.011	$0 \cdot 116$	$0 \cdot 94$
$3 \cdot 6$	0.097	0.0297	$0 \cdot 0008$	$7 \cdot 43$	$6 \cdot 5$	-	0.005	$0 \cdot 122$	$0 \cdot 23$
$3 \cdot 8$	0.088	$0 \cdot 037$	$0 \cdot 0016$	$10 \cdot 02$	$7 \cdot 0$	-	$0 \cdot 002$	$0 \cdot 125$	$0 \cdot 17$
$4 \cdot 0$	0.08	0.044	$0 \cdot 003$	13.35	$7 \cdot 4$	-	$0 \cdot 00074$	$0 \cdot 1259$	$0 \cdot 22$
$4 \cdot 1$	$0 \cdot 066$	0.056	0.005	$14 \cdot 15$	$7 \cdot 8$	-	$0 \cdot 00029$	$0 \cdot 1263$	$0 \cdot 39$
$4 \cdot 2$	$0 \cdot 059$	0.061	0.007	15.73	$8 \cdot 0$	-	$0 \cdot 00017$	$0 \cdot 1264$	$0 \cdot 56$
$4 \cdot 3$	0.049	0.068	$0 \cdot 0096$	16.28	$8 \cdot 2$	-	$0 \cdot 000114$	$0 \cdot 1265$	$0 \cdot 82$
$4 \cdot 4$	0.040	0.074	0.013	16.58	$8 \cdot 6$	-	-	$0 \cdot 1266$	$1 \cdot 79$
$4 \cdot 5$	0.029	$0 \cdot 080$	0.018	15.08	$9 \cdot 0$	-	-	$0 \cdot 1266$	$4 \cdot 49$
$4 \cdot 6$	0.022	0.085	0.020	14.30	$9 \cdot 2$	-	-	$0 \cdot 1266$	$7 \cdot 12$
$4 \cdot 8$	0.008	0.087	$0 \cdot 032$	$8 \cdot 22$	$9 \cdot 6$	-	-	$0 \cdot 1266$	17.90

The results obtained give further support to Dawson's method of representing acid-base catalysis; a quantitative measure of the effect on the mobility of the three-carbon system, of altering the terminal activating groups from $-\mathrm{CO}_{2} \mathrm{H}$ to $-\mathrm{CO}_{2}{ }^{\prime}$, has been obtained.

Experimental.

Measurement of Rate of Racemisation at 100°.-The acid was prepared and resolved, and the racemisation carried out, as described previously (Fitzgerald and Packer, loc. cit.). Except in the case of the more concentrated ammonia solutions, points on the graph obtained by plotting the logarithm of optical rotation against time fell close to, and symmetrically about, the straight line which was the calculated unimolecular velocity constant given in Table I. These observations are not recorded, but the values of k in the table represent the final mean calculated values.

Measurement of p_{H}. -The p_{H} of most of the solutions was measured after racemisation by means of a Hellige comparator with coloured glass standards. For the determination of the

Table IV.

C.c.	$p_{\text {H. }}$	[A].	a.	$\left[\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4}\right]$.	[$\left.\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{4}\right] . \quad K_{1} \times 10^{4}$.
0	$2 \cdot 48$	$0 \cdot 1000$	0.0331	0.0967	$0 \cdot 0033$ 1-13
1	$2 \cdot 82$	$0 \cdot 0823$	$0 \cdot 0184$	$0 \cdot 0808$	$0 \cdot 0101 \quad 1.89$
2	$3 \cdot 10$	$0 \cdot 0676$	$0 \cdot 0118$	$0 \cdot 0668$	$0.0166 \quad 1.97$
3	3.36	$0 \cdot 0551$	$0 \cdot 0079$	$0 \cdot 0547$	$0.0222-1.77$
4	$3 \cdot 62$	$0 \cdot 0441$	$0 \cdot 0054$	$0 \cdot 0442$	$0 \cdot 0272 \quad 1.48$
6	$3 \cdot 85$	$0 \cdot 0271$	$0 \cdot 0052$	$0 \cdot 0270$	$0.0355 \quad 1.86$
8	$4 \cdot 16$	$0 \cdot 0136$	$0 \cdot 0051$	$0 \cdot 0135$	$0.0421 \quad 2.14$
10	$4 \cdot 40$	$0 \cdot 00275$	$0 \cdot 0145$	$0 \cdot 0027$	0.0473 (6.95)
					Average 1.75
	C.c.	$p_{\text {H }}$.	$\mathrm{Na}_{2} \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$.	$\mathrm{NaC}_{7} \mathrm{H}_{9} \mathrm{O}_{4}$.	$K_{2} \times 10^{6}$.
	12	$4 \cdot 62$	$0 \cdot 134$	0.866	(3.71)
	14	$4 \cdot 82$	$0 \cdot 323$	$0 \cdot 677$	$7 \cdot 06$
	15	$4 \cdot 93$	$0 \cdot 418$	0.582	$8 \cdot 44$
	16	$5 \cdot 10$	$0 \cdot 512$	$0 \cdot 488$	$8 \cdot 24$
	17	$5 \cdot 41$	$0 \cdot 607$	$0 \cdot 393$	6.01
	$17 \cdot 5$	$5 \cdot 59$	$0 \cdot 654$	$0 \cdot 346$	$4 \cdot 86$
	18	$6 \cdot 22$	$0 \cdot 701$	$0 \cdot 299$	(1.41)
	20	11.22	$0 \cdot 890$	$0 \cdot 110$	-
					rage 6.92

The Dimorphism of Certain Aliphatic Compounds. Part V. 1657
dissociation constants, measurements were made at 25°, using a hydrogen electrode of the Hildebrand type, and a saturated calomel half-cell. E.M.F. measurements were checked against standard buffer solutions. A few measurements were made with a quinhydrone electrode (see p. 1654).

Determination of the Dissociation Constants of the Acid.-This was done by electrometric titration with sodium hydroxide. The constants were calculated by Britton's method (J., 1925, 127, 1897). The results are given in Table IV, the concentration of the free acid being represented by [A]. Col. 1 gives the number of c.c. of $0.0945 M$-sodium hydroxide added to 10 c.c. of $0 \cdot 1 M$-glutaconic acid; col. 2 the p_{H} measured by the hydrogen electrode. The remaining columns are calculated by Britton's method. The dissociation constants are calculated from the equations: $K_{1}=\left[\mathrm{H}^{*}\right]\left[\mathrm{HC}^{\prime}\right] /[\mathrm{HCH}], K_{2}=\left[\mathrm{H}^{*}\right]\left[\mathrm{C}^{\prime \prime}\right] /\left[\mathrm{HC}^{\prime}\right]$. The values $K_{1}=1.8 \times 10^{-4}, K_{2}=7 \times 10^{-6}$ are used in the sequel.

Constants were also calculated from Auerbach and Smolczyk's equation (Z. physikal. Chem., 1924, 110, 83), but although results for K_{1} were in good agreement with the above (average $K_{1}=1.78 \times 10^{-4}$), yet those for K_{2} varied according to the pairs of experimental values employed (cf. Britton, loc: cit., p. 1908).

Calculation of Concentrations of [HCH], [HC^{\prime}], and [$\mathrm{C}^{\prime \prime}$] at Different Concentrations of Potassium Hydroxide.-The calculations are possible from a consideration of the above expressions for K_{1} and K_{2} together with the following expressions :

$$
\begin{gathered}
{\left[\mathrm{K}^{*}\right]+\left[\mathrm{H}^{*}\right]=\left[\mathrm{OH}^{\prime}\right]+\left[\mathrm{HC}^{\prime}\right]+2\left[\mathrm{C}^{\prime \prime}\right] \quad .} \\
{[\mathrm{HCH}]+\left[\mathrm{HC}^{\prime}\right]+\left[\mathrm{C}^{\prime \prime}\right]=[m] \quad .} \\
.
\end{gathered} \cdot .
$$

where $[m]$ is the original concentration of the acid.
It can be shown that :
(i) $\mathrm{U} p$ to $p_{\mathrm{H}} 2$, only HCH is present in appreciable concentration.
(ii) Between $p_{\mathrm{H}} 2$ and $p_{\mathrm{H}} 3 \cdot 5,\left[\mathrm{OH}^{\prime}\right]$ and $\left[\mathrm{C}^{\prime \prime}\right]$ are negligible with respect to $\left[\mathrm{K}^{\circ}\right]$ and $[m]$, hence (1) and (2) reduce to

$$
\left[\mathrm{K}^{*}\right]+\left[\mathrm{H}^{*}\right]=\left[\mathrm{HC}^{\prime}\right] ; \quad[m]=[\mathrm{HCH}]+\left[\mathrm{HC}^{\prime}\right]
$$

(iii) Between $p_{\mathrm{H}} 3.5$ and $p_{\mathrm{H}} 6,\left[\mathrm{OH}^{\prime}\right]$ and $\left[\mathrm{H}^{*}\right]$ are negligible in comparison with $\left[\mathrm{K}^{*}\right]$, hence (1) reduces to $\left[\mathrm{K}^{*}\right]=\left[\mathrm{HC}^{\prime}\right]+2\left[\mathrm{C}^{\prime \prime}\right]$; and this combined with $K_{2}=\left[\mathrm{H}^{\circ}\right]\left[\mathrm{C}^{\prime \prime}\right] /\left[\mathrm{HC}^{\prime}\right]$ gives $\left[\mathrm{K}^{*}\right]=\left[\mathrm{C}^{\prime \prime}\right]\left(2+\left[\mathrm{H}^{*}\right] / K_{2}\right)$.

Equation (2) holds up to $p_{\mathrm{H}} 5$, above which $[\mathrm{HCH}]$ is very small, but not negligible in its effect; so this has been calculated from $K_{1} K_{2}=\left[\mathrm{H}^{\circ}\right]^{2}\left[\mathrm{C}^{\prime \prime}\right] /[\mathrm{HCH}]$.
(iv) Above $p_{\text {H }} 7$. Values for [$\left.\mathrm{K}^{*}\right]$ at any $p_{\text {H }}$ below 7 were obtained by interpolation in the graph of molarity of added KOH plotted against the resultant p_{H} of the solution, but above $p_{\mathrm{H}} 7$ this could not be done with accuracy. Equation (2) becomes $[m]=\left[\mathrm{HC}^{\prime}\right]+\left[\mathrm{C}^{\prime}\right]$, and combining this with $K_{2}=\left[\mathrm{H}^{*}\right]\left[\mathrm{C}^{\prime \prime}\right] /\left[\mathrm{HC}^{\prime}\right]$, we have $[m]=\left[\mathrm{C}^{\prime \prime}\right]\left(1+\left[\mathrm{H}^{*}\right] / K_{2}\right)$.

The values for $[\mathrm{HCH}],\left[\mathrm{HC}^{\prime}\right]$, and $\left[\mathrm{C}^{\prime \prime}\right]$ have been tabulated in Table III.

Canterbury University College, Christchurch, New Zealand.

